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Recursion 
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Outline 

•  Induction 

•  Linear recursion  
–  Example 1: Factorials 

–  Example 2:  Powers 

–  Example 3: Reversing an array 

•  Binary recursion 
–  Example 1:  The Fibonacci sequence 

–  Example 2:  The Tower of Hanoi 

•  Drawbacks and pitfalls of recursion 
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Outcomes 

•  By understanding this lecture you should be able to: 
–  Use induction to prove the correctness of a recursive algorithm. 

–  Identify the base case for an inductive solution 

–  Design and analyze linear and binary recursion algorithms 

–  Identify the overhead costs of recursion 

–  Avoid errors commonly made in writing recursive algorithms 
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Divide and Conquer 

•  When faced with a difficult problem, a classic technique 
is to break it down into smaller parts that can be solved 
more easily. 

•  Recursion uses induction to do this. 
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History of Induction 

•  Implicit use of induction goes back at least to Euclid’s 
proof that the number of primes is infinite (c. 300 BC). 

•  The first explicit formulation of the principle is due to 
Pascal (1665). 

Euclid of Alexandria,  
"The Father of Geometry"  
c. 300 BC 

Blaise Pascal, 1623 - 1662 
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Induction:  Review 

•  Induction is a mathematical method for proving that a 
statement is true for a (possibly infinite) sequence of 
objects. 

•  There are two things that must be proved: 
1.  The Base Case:  The statement is true for the first object 

2.  The Inductive Step:  If the statement is true for a given object, 
it is also true for the next object. 

•  If these two statements hold, then the statement holds 
for all objects. 
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Induction Example:  An Arithmetic Sum 

•  Claim: 

•  Proof:  
1.  Base Case.  The statement holds for n = 0: 

 

2.  Inductive Step.  If the claim holds for n = k, then it also holds for n = k+1.   
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Recursive Divide and Conquer 
•  You are given a problem input that is too big to solve directly. 

•  You imagine,  
–  “Suppose I had a friend who could give me the answer to the same 

problem with slightly smaller input.” 

–  “Then I could easily solve the larger problem.” 

•  In recursion this “friend” will actually be another instance (clone) of 
yourself. 

Tai (left) and Snuppy (right):  the first puppy clone. 



Last Updated 8 October 2015 
CSE 2011 
Prof. J. Elder - 10 - 

Friends & Induction 

Recursive Algorithm: 
• Assume you have an algorithm that works. 
• Use it to write an algorithm that works. 

If I could get in, 
I could get the key. 

Then  I could unlock the door  
so that I can get in. 

 
Circular Argument! 

Example from J. Edmonds – Thanks Jeff! 
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Friends & Induction 

Recursive Algorithm: 
• Assume you have an algorithm that works. 
• Use it to write an algorithm that works. 

To get into my house 
I must get the key from a smaller house 
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Friends & Induction 

Recursive Algorithm: 
• Assume you have an algorithm that works. 
• Use it to write an algorithm that works. 

Use brute force  
to get into  
the smallest house. 

The “base case” 
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Recall:  Design Pattern 

•  A template for a software solution that can be applied to 
a variety of situations. 

•  Main elements of solution are described in the abstract. 

•  Can be specialized to meet specific circumstances. 
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Linear Recursion Design Pattern 
•  Test for base cases 

–  Begin by testing for a set of base cases (there should be at least 
one).  

–  Every possible chain of recursive calls must eventually reach a 
base case, and the handling of each base case should not use 
recursion. 

•  Recurse once 
–  Perform a single recursive call. (This recursive step may involve 

a test that decides which of several possible recursive calls to 
make, but it should ultimately choose to make just one of these 
calls each time we perform this step.) 

–  Define each possible recursive call so that it makes progress 
towards a base case. 
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Example 1 

•  The factorial function: 
–  n! = 1· 2· 3· ··· · (n-1)· n 

•  Recursive definition: 
 
 
•  As a Java method: 

// recursive factorial function  
public static int  recursiveFactorial(int n) {  
    if  (n  ==  0)  return  1; // base case 
    else return  n  *  recursiveFactorial(n- 1); // recursive case 
} 
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Tracing Recursion 
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Linear Recursion 

•  recursiveFactorial is an example of linear recursion:  
only one recursive call is made per stack frame. 

•  Since there are n recursive calls, this algorithm has O(n) 
run time.  

// recursive factorial function  
public static int  recursiveFactorial(int n) {  
    if  (n  ==  0)  return  1; // base case 
    else return  n  *  recursiveFactorial(n- 1); // recursive case 
} 
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End of Lecture 

Oct 6, 2015 
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Example 2:  Computing Powers 

•  The power function, p(x,n) = xn, can be 
defined recursively: 

•  Assume multiplication takes constant time 
(independent of value of arguments). 

•  This leads to a power function that runs in 
O(n) time (for we make n recursive calls). 

•  Can we do better than this? 

 

  
p(x,n) = 1 if n = 0

x ⋅ p(x,n−1) otherwise

⎧
⎨
⎪

⎩⎪



Last Updated 8 October 2015 
CSE 2011 
Prof. J. Elder - 21 - 

Recursive Squaring 
•  We can derive a more efficient linearly recursive 

algorithm by using repeated squaring: 

 

•  For example, 
24 = (24/2)2 = (22)2 = 42 = 16

25 =  2(24/2)2 = 2(22)2 = 2(42) = 32 

  

p(x,n) =
1

x ⋅p(x,(n −1) / 2)2

p(x,n / 2)2

if n = 0
if n > 0 is odd
if n > 0 is even

⎧

⎨
⎪⎪

⎩
⎪
⎪

Naïve method entails 3 multiplies. Recursive squaring entails 2 multiplies. 

Naïve method entails 4 multiplies. Recursive squaring entails 3 multiplies. 
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A Recursive Squaring Method 
Algorithm Power(x, n): 
      Input: A number x and integer n 

      Output: The value xn 

     if n = 0 then 
  return 1 

     if n is odd then 
  y  = Power(x, (n - 1)/ 2) 

  return x · y ·y 
     else 

  y = Power(x, n/ 2) 

  return y · y 
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Analyzing the Recursive Squaring Method 

Although there are 2 
statements that 
recursively call Power, only 
one is executed per stack 
frame. 

Each time we make a 
recursive call we halve the 
value of n (roughly). 

Thus we make a total of 
log n recursive calls. That 
is, this method runs in 
O(log n) time. 

Algorithm Power(x, n): 
      Input: A number x and integer n = 0 

      Output: The value xn 

     if n = 0 then 
  return 1 

     if n is odd then 
  y  = Power(x, (n - 1)/ 2) 

  return x · y ·y 
     else 

  y = Power(x, n/ 2) 

  return y · y 
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Tail Recursion 
•  Tail recursion occurs when a linearly recursive 

method makes its recursive call as its last step. 

•  Such a method can easily be converted to an 
iterative method (which saves on some resources). 
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Example:  Recursively Reversing an Array 

Algorithm ReverseArray(A, i,  j): 

      Input: An array A and nonnegative integer indices i and  j 

      Output: The reversal of the elements in A starting at index 
i and ending at  j 

     if i <  j then 

  Swap A[i] and A[ j] 

  ReverseArray(A, i + 1,  j - 1) 

     return 
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Example:  Iteratively Reversing an Array 
Algorithm IterativeReverseArray(A, i, j ): 

      Input: An array A and nonnegative integer indices i and j 

      Output: The reversal of the elements in A starting at 
index i and ending at j 

     while i <  j do 
 Swap A[i ] and A[ j ] 

 i  = i + 1 

 j  = j - 1 

     return 
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Defining Arguments for Recursion 
•  Solving a problem recursively sometimes requires 

passing additional parameters. 

•  ReverseArray is a good example:  although we might 
initially think of passing only the array A as a parameter 
at the top level, lower levels need to know where in the 
array they are operating.   

•  Thus the recursive interface is ReverseArray(A, i, j). 

•  We then invoke the method at the highest level with the 
message ReverseArray(A, 1, n). 
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Binary Recursion  

•  Binary recursion occurs whenever there are 
two recursive calls for each non-base case. 

•  Example 1: The Fibonacci Sequence 
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The Fibonacci Sequence 

•  Fibonacci numbers are defined recursively: 
F0 =  0 

F1 =  1 

Fi =  Fi-1 + Fi-2     for i > 1. 
 

 

   (The “Golden Ratio”) 

Fibonacci (c. 1170 - c. 1250) 
(aka Leonardo of Pisa)  

  
The ratio Fi / Fi−1 converges to ϕ =

1+ 5
2

= 1.61803398874989...



Last Updated 8 October 2015 
CSE 2011 
Prof. J. Elder - 31 - 

The Golden Ratio 

•  Two quantities are in the golden ratio if the ratio of the 
sum of the quantities to the larger quantity is equal to the 
ratio of the larger quantity to the smaller one.  

  
ϕ  is the unique positive solution to ϕ =

a + b
a

=
a
b

.
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The Golden Ratio 

Leonardo 

The Parthenon 



Last Updated 8 October 2015 
CSE 2011 
Prof. J. Elder - 33 - 

Computing Fibonacci Numbers 

F0 =  0 
F1 =  1 
Fi =  Fi-1 + Fi-2     for i > 1. 

•  A recursive algorithm (first attempt): 
Algorithm BinaryFib(k): 

      Input: Positive integer k 

      Output: The kth Fibonacci number Fk 

     if k < 2 then 
  return k 

     else 
  return BinaryFib(k - 1) + BinaryFib(k - 2) 
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Analyzing the Binary Recursion Fibonacci Algorithm 

•  Let nk denote number of recursive calls made by BinaryFib(k).  
Then 
–  n0 = 1   

–  n1 = 1   

–  n2 = n1 + n0 + 1 = 1 + 1 + 1 = 3   

–  n3 = n2 + n1 + 1 = 3 + 1 + 1 = 5   

–  n4 = n3 + n2 + 1 = 5 + 3 + 1 = 9   

–  n5 = n4 + n3 + 1 = 9 + 5 + 1 = 15   

–  n6 = n5 + n4 + 1 = 15 + 9 + 1 = 25   

–  n7 = n6 + n5 + 1 = 25 + 15 + 1 = 41   

–  n8 = n7 + n6 + 1 = 41 + 25 + 1 = 67. 

•  Note that nk  more than doubles for every other value of nk.  That 
is, nk > 2k/2. It increases exponentially! 
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A Better Fibonacci Algorithm  

•  Use linear recursion instead: 
Algorithm LinearFibonacci(k): 

      Input: A positive integer k 

      Output: Pair of Fibonacci numbers (Fk, Fk-1) 
     if k = 1 then 

  return (k, 0) 
     else 

  (i,  j)  =  LinearFibonacci(k - 1) 

  return (i +j, i) 

•  Runs in O(k) time. 

LinearFibonacci(k):  Fk, Fk-1 

LinearFibonacci(k-1): Fk-1, Fk-2 
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Binary Recursion 

•  Second Example: The Tower of Hanoi 
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Example 
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Tower of Hanoi 

 This job of mine 
is a bit daunting. 
Where do I start? 

And I am lazy. 

Example from J. Edmonds – Thanks Jeff! 
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Tower of Hanoi 

At some point, 
the biggest disk 

moves. 
I will do that job. 
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Tower of Hanoi 

To do this,  
the other disks 
must be in the 

middle. 
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Tower of Hanoi 

How will these 
move? 

I will get a 
friend to do it. 
And another to 

move these. 
I only move the 

big disk. 
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Tower of Hanoi 

2 recursive 
calls! 
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Tower of Hanoi 

Time:  
T(1) = 1,  
T(n) = 
        ≈ 2(2T(n-2))  
        ≈ 4(2T(n-3)) 

≈ 2T(n-1) 
≈ 4T(n-2) 
≈ 8T(n-3) 
≈ 2i T(n-i) 
≈ 2n 

1 + 2T(n-1) 

Exponential again!! 
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Binary Recursion: Summary 

•  Binary recursion spawns an exponential number of 
recursive calls. 

•  If the inputs are only declining arithmetically (e.g., n-1, 
n-2,…) the result will be an exponential running time. 

•  In order to use binary recursion, the input must be 
declining geometrically (e.g., n/2, n/4, …). 

•  We will see efficient examples of binary recursion with 
geometricaly declining inputs when we discuss heaps 
and sorting. 
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The Overhead Costs of Recursion 

•  Many problems are naturally defined recursively. 

•  This can lead to simple, elegant code. 

•  However, recursive solutions entail a cost in time and 
memory: each recursive call requires that the current 
process state (variables, program counter) be pushed 
onto the system stack, and popped once the recursion 
unwinds. 

•  This typically affects the running time constants, but not 
the asymptotic time complexity (e.g., O(n), O(n2) etc.) 

•  Thus recursive solutions may still be preferred unless 
there are very strict time/memory constraints. 
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The “Curse” in Recursion:  Errors to Avoid 

// recursive factorial function  
public static int  recursiveFactorial(int n) {  
    return  n  *  recursiveFactorial(n- 1);  
} 
 

•  There must be a base condition:  the recursion must 
ground out! 
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The “Curse” in Recursion: Errors to Avoid 

// recursive factorial function  
public static int  recursiveFactorial(int n) {  
    if  (n  ==  0)  return  recursiveFactorial(n); // base case 
    else return  n  *  recursiveFactorial(n- 1); // recursive case 
} 
 

•  The base condition must not involve more recursion! 
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The “Curse” in Recursion: Errors to Avoid 

// recursive factorial function  
public static int  recursiveFactorial(int n) {  
    if  (n  ==  0)  return  1; // base case 
    else return  (n – 1)  *  recursiveFactorial(n); // recursive 

case 
} 
 

•  The input must be converging toward the base 
condition! 
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Outcomes 

•  By understanding this lecture you should be able to: 
–  Use induction to prove the correctness of a recursive algorithm. 

–  Identify the base case for an inductive solution 

–  Design and analyze linear and binary recursion algorithms 

–  Identify the overhead costs of recursion 

–  Avoid errors commonly made in writing recursive algorithms 


