
Last Updated 8 October 2015
CSE 2011
Prof. J. Elder - 1 -

Recursion

Last Updated 8 October 2015
CSE 2011
Prof. J. Elder - 2 -

Outline

•  Induction

•  Linear recursion
–  Example 1: Factorials

–  Example 2: Powers

–  Example 3: Reversing an array

•  Binary recursion
–  Example 1: The Fibonacci sequence

–  Example 2: The Tower of Hanoi

•  Drawbacks and pitfalls of recursion

Last Updated 8 October 2015
CSE 2011
Prof. J. Elder - 3 -

Outcomes

•  By understanding this lecture you should be able to:
–  Use induction to prove the correctness of a recursive algorithm.

–  Identify the base case for an inductive solution

–  Design and analyze linear and binary recursion algorithms

–  Identify the overhead costs of recursion

–  Avoid errors commonly made in writing recursive algorithms

Last Updated 8 October 2015
CSE 2011
Prof. J. Elder - 4 -

Outline

•  Induction

•  Linear recursion
–  Example 1: Factorials

–  Example 2: Powers

–  Example 3: Reversing an array

•  Binary recursion
–  Example 1: The Fibonacci sequence

–  Example 2: The Tower of Hanoi

•  Drawbacks and pitfalls of recursion

Last Updated 8 October 2015
CSE 2011
Prof. J. Elder - 5 -

Divide and Conquer

•  When faced with a difficult problem, a classic technique
is to break it down into smaller parts that can be solved
more easily.

•  Recursion uses induction to do this.

Last Updated 8 October 2015
CSE 2011
Prof. J. Elder - 6 -

History of Induction

•  Implicit use of induction goes back at least to Euclid’s
proof that the number of primes is infinite (c. 300 BC).

•  The first explicit formulation of the principle is due to
Pascal (1665).

Euclid of Alexandria,
"The Father of Geometry"
c. 300 BC

Blaise Pascal, 1623 - 1662

Last Updated 8 October 2015
CSE 2011
Prof. J. Elder - 7 -

Induction: Review

•  Induction is a mathematical method for proving that a
statement is true for a (possibly infinite) sequence of
objects.

•  There are two things that must be proved:
1.  The Base Case: The statement is true for the first object

2.  The Inductive Step: If the statement is true for a given object,
it is also true for the next object.

•  If these two statements hold, then the statement holds
for all objects.

Last Updated 8 October 2015
CSE 2011
Prof. J. Elder - 8 -

Induction Example: An Arithmetic Sum

•  Claim:

•  Proof:
1.  Base Case. The statement holds for n = 0:

2.  Inductive Step. If the claim holds for n = k, then it also holds for n = k+1.

i

i=0

n

∑ = 1
2

n(n +1) ∀n ∈

i
i=0

n

∑ = i
i=0

0

∑ = 0

1
2
n(n +1) = 1

2
0(0 +1) = 0

i
i=0

k+1

∑ = k +1+ i
i=0

k

∑ = k +1+ 1
2
k(k +1) = 1

2
(k +1)(k + 2)

✓

✓

Last Updated 8 October 2015
CSE 2011
Prof. J. Elder - 9 -

Recursive Divide and Conquer
•  You are given a problem input that is too big to solve directly.

•  You imagine,
–  “Suppose I had a friend who could give me the answer to the same

problem with slightly smaller input.”

–  “Then I could easily solve the larger problem.”

•  In recursion this “friend” will actually be another instance (clone) of
yourself.

Tai (left) and Snuppy (right): the first puppy clone.

Last Updated 8 October 2015
CSE 2011
Prof. J. Elder - 10 -

Friends & Induction

Recursive Algorithm:
• Assume you have an algorithm that works.
• Use it to write an algorithm that works.

If I could get in,
I could get the key.

Then I could unlock the door
so that I can get in.

Circular Argument!

Example from J. Edmonds – Thanks Jeff!

Last Updated 8 October 2015
CSE 2011
Prof. J. Elder - 11 -

Friends & Induction

Recursive Algorithm:
• Assume you have an algorithm that works.
• Use it to write an algorithm that works.

To get into my house
I must get the key from a smaller house

Last Updated 8 October 2015
CSE 2011
Prof. J. Elder - 12 -

Friends & Induction

Recursive Algorithm:
• Assume you have an algorithm that works.
• Use it to write an algorithm that works.

Use brute force
to get into
the smallest house.

The “base case”

Last Updated 8 October 2015
CSE 2011
Prof. J. Elder - 13 -

Outline

•  Induction

•  Linear recursion
–  Example 1: Factorials

–  Example 2: Powers

–  Example 3: Reversing an array

•  Binary recursion
–  Example 1: The Fibonacci sequence

–  Example 2: The Tower of Hanoi

•  Drawbacks and pitfalls of recursion

Last Updated 8 October 2015
CSE 2011
Prof. J. Elder - 14 -

Recall: Design Pattern

•  A template for a software solution that can be applied to
a variety of situations.

•  Main elements of solution are described in the abstract.

•  Can be specialized to meet specific circumstances.

Last Updated 8 October 2015
CSE 2011
Prof. J. Elder - 15 -

Linear Recursion Design Pattern
•  Test for base cases

–  Begin by testing for a set of base cases (there should be at least
one).

–  Every possible chain of recursive calls must eventually reach a
base case, and the handling of each base case should not use
recursion.

•  Recurse once
–  Perform a single recursive call. (This recursive step may involve

a test that decides which of several possible recursive calls to
make, but it should ultimately choose to make just one of these
calls each time we perform this step.)

–  Define each possible recursive call so that it makes progress
towards a base case.

Last Updated 8 October 2015
CSE 2011
Prof. J. Elder - 16 -

Example 1

•  The factorial function:
–  n! = 1· 2· 3· ··· · (n-1)· n

•  Recursive definition:

•  As a Java method:

// recursive factorial function
public static int recursiveFactorial(int n) {
 if (n == 0) return 1; // base case
 else return n * recursiveFactorial(n- 1); // recursive case
}

⎩
⎨
⎧

−⋅
=

=
elsenfn
n

nf
)1(

0 if1
)(

Last Updated 8 October 2015
CSE 2011
Prof. J. Elder - 17 -

Tracing Recursion

Last Updated 8 October 2015
CSE 2011
Prof. J. Elder - 18 -

Linear Recursion

•  recursiveFactorial is an example of linear recursion:
only one recursive call is made per stack frame.

•  Since there are n recursive calls, this algorithm has O(n)
run time.

// recursive factorial function
public static int recursiveFactorial(int n) {
 if (n == 0) return 1; // base case
 else return n * recursiveFactorial(n- 1); // recursive case
}

Last Updated 8 October 2015
CSE 2011
Prof. J. Elder - 19 -

End of Lecture

Oct 6, 2015

Last Updated 8 October 2015
CSE 2011
Prof. J. Elder - 20 -

Example 2: Computing Powers

•  The power function, p(x,n) = xn, can be
defined recursively:

•  Assume multiplication takes constant time
(independent of value of arguments).

•  This leads to a power function that runs in
O(n) time (for we make n recursive calls).

•  Can we do better than this?

p(x,n) = 1 if n = 0

x ⋅ p(x,n−1) otherwise

⎧
⎨
⎪

⎩⎪

Last Updated 8 October 2015
CSE 2011
Prof. J. Elder - 21 -

Recursive Squaring
•  We can derive a more efficient linearly recursive

algorithm by using repeated squaring:

•  For example,
24 = (24/2)2 = (22)2 = 42 = 16

25 = 2(24/2)2 = 2(22)2 = 2(42) = 32

p(x,n) =
1

x ⋅p(x,(n −1) / 2)2

p(x,n / 2)2

if n = 0
if n > 0 is odd
if n > 0 is even

⎧

⎨
⎪⎪

⎩
⎪
⎪

Naïve method entails 3 multiplies. Recursive squaring entails 2 multiplies.

Naïve method entails 4 multiplies. Recursive squaring entails 3 multiplies.

Last Updated 8 October 2015
CSE 2011
Prof. J. Elder - 22 -

A Recursive Squaring Method
Algorithm Power(x, n):
 Input: A number x and integer n

 Output: The value xn

 if n = 0 then
 return 1

 if n is odd then
 y = Power(x, (n - 1)/ 2)

 return x · y ·y
 else

 y = Power(x, n/ 2)

 return y · y

Last Updated 8 October 2015
CSE 2011
Prof. J. Elder - 23 -

Analyzing the Recursive Squaring Method

Although there are 2
statements that
recursively call Power, only
one is executed per stack
frame.

Each time we make a
recursive call we halve the
value of n (roughly).

Thus we make a total of
log n recursive calls. That
is, this method runs in
O(log n) time.

Algorithm Power(x, n):
 Input: A number x and integer n = 0

 Output: The value xn

 if n = 0 then
 return 1

 if n is odd then
 y = Power(x, (n - 1)/ 2)

 return x · y ·y
 else

 y = Power(x, n/ 2)

 return y · y

Last Updated 8 October 2015
CSE 2011
Prof. J. Elder - 24 -

Tail Recursion
•  Tail recursion occurs when a linearly recursive

method makes its recursive call as its last step.

•  Such a method can easily be converted to an
iterative method (which saves on some resources).

Last Updated 8 October 2015
CSE 2011
Prof. J. Elder - 25 -

Example: Recursively Reversing an Array

Algorithm ReverseArray(A, i, j):

 Input: An array A and nonnegative integer indices i and j

 Output: The reversal of the elements in A starting at index
i and ending at j

 if i < j then

 Swap A[i] and A[j]

 ReverseArray(A, i + 1, j - 1)

 return

Last Updated 8 October 2015
CSE 2011
Prof. J. Elder - 26 -

Example: Iteratively Reversing an Array
Algorithm IterativeReverseArray(A, i, j):

 Input: An array A and nonnegative integer indices i and j

 Output: The reversal of the elements in A starting at
index i and ending at j

 while i < j do
 Swap A[i] and A[j]

 i = i + 1

 j = j - 1

 return

Last Updated 8 October 2015
CSE 2011
Prof. J. Elder - 27 -

Defining Arguments for Recursion
•  Solving a problem recursively sometimes requires

passing additional parameters.

•  ReverseArray is a good example: although we might
initially think of passing only the array A as a parameter
at the top level, lower levels need to know where in the
array they are operating.

•  Thus the recursive interface is ReverseArray(A, i, j).

•  We then invoke the method at the highest level with the
message ReverseArray(A, 1, n).

Last Updated 8 October 2015
CSE 2011
Prof. J. Elder - 28 -

Outline

•  Induction

•  Linear recursion
–  Example 1: Factorials

–  Example 2: Powers

–  Example 3: Reversing an array

•  Binary recursion
–  Example 1: The Fibonacci sequence

–  Example 2: The Tower of Hanoi

•  Drawbacks and pitfalls of recursion

Last Updated 8 October 2015
CSE 2011
Prof. J. Elder - 29 -

Binary Recursion

•  Binary recursion occurs whenever there are
two recursive calls for each non-base case.

•  Example 1: The Fibonacci Sequence

Last Updated 8 October 2015
CSE 2011
Prof. J. Elder - 30 -

The Fibonacci Sequence

•  Fibonacci numbers are defined recursively:
F0 = 0

F1 = 1

Fi = Fi-1 + Fi-2 for i > 1.

 (The “Golden Ratio”)

Fibonacci (c. 1170 - c. 1250)
(aka Leonardo of Pisa)

The ratio Fi / Fi−1 converges to ϕ =

1+ 5
2

= 1.61803398874989...

Last Updated 8 October 2015
CSE 2011
Prof. J. Elder - 31 -

The Golden Ratio

•  Two quantities are in the golden ratio if the ratio of the
sum of the quantities to the larger quantity is equal to the
ratio of the larger quantity to the smaller one.

ϕ is the unique positive solution to ϕ =

a + b
a

=
a
b

.

Last Updated 8 October 2015
CSE 2011
Prof. J. Elder - 32 -

The Golden Ratio

Leonardo

The Parthenon

Last Updated 8 October 2015
CSE 2011
Prof. J. Elder - 33 -

Computing Fibonacci Numbers

F0 = 0
F1 = 1
Fi = Fi-1 + Fi-2 for i > 1.

•  A recursive algorithm (first attempt):
Algorithm BinaryFib(k):

 Input: Positive integer k

 Output: The kth Fibonacci number Fk

 if k < 2 then
 return k

 else
 return BinaryFib(k - 1) + BinaryFib(k - 2)

Last Updated 8 October 2015
CSE 2011
Prof. J. Elder - 34 -

Analyzing the Binary Recursion Fibonacci Algorithm

•  Let nk denote number of recursive calls made by BinaryFib(k).
Then
–  n0 = 1

–  n1 = 1

–  n2 = n1 + n0 + 1 = 1 + 1 + 1 = 3

–  n3 = n2 + n1 + 1 = 3 + 1 + 1 = 5

–  n4 = n3 + n2 + 1 = 5 + 3 + 1 = 9

–  n5 = n4 + n3 + 1 = 9 + 5 + 1 = 15

–  n6 = n5 + n4 + 1 = 15 + 9 + 1 = 25

–  n7 = n6 + n5 + 1 = 25 + 15 + 1 = 41

–  n8 = n7 + n6 + 1 = 41 + 25 + 1 = 67.

•  Note that nk more than doubles for every other value of nk. That
is, nk > 2k/2. It increases exponentially!

Last Updated 8 October 2015
CSE 2011
Prof. J. Elder - 35 -

A Better Fibonacci Algorithm

•  Use linear recursion instead:
Algorithm LinearFibonacci(k):

 Input: A positive integer k

 Output: Pair of Fibonacci numbers (Fk, Fk-1)
 if k = 1 then

 return (k, 0)
 else

 (i, j) = LinearFibonacci(k - 1)

 return (i +j, i)

•  Runs in O(k) time.

LinearFibonacci(k): Fk, Fk-1

LinearFibonacci(k-1): Fk-1, Fk-2

Last Updated 8 October 2015
CSE 2011
Prof. J. Elder - 36 -

Binary Recursion

•  Second Example: The Tower of Hanoi

Last Updated 8 October 2015
CSE 2011
Prof. J. Elder - 37 -

Example

Last Updated 8 October 2015
CSE 2011
Prof. J. Elder - 38 -

Tower of Hanoi

 This job of mine
is a bit daunting.
Where do I start?

And I am lazy.

Example from J. Edmonds – Thanks Jeff!

Last Updated 8 October 2015
CSE 2011
Prof. J. Elder - 39 -

Tower of Hanoi

At some point,
the biggest disk

moves.
I will do that job.

Last Updated 8 October 2015
CSE 2011
Prof. J. Elder - 40 -

Tower of Hanoi

To do this,
the other disks
must be in the

middle.

Last Updated 8 October 2015
CSE 2011
Prof. J. Elder - 41 -

Tower of Hanoi

How will these
move?

I will get a
friend to do it.
And another to

move these.
I only move the

big disk.

Last Updated 8 October 2015
CSE 2011
Prof. J. Elder - 42 -

Tower of Hanoi

2 recursive
calls!

Last Updated 8 October 2015
CSE 2011
Prof. J. Elder - 43 -

Tower of Hanoi

Time:
T(1) = 1,
T(n) =
 ≈ 2(2T(n-2))
 ≈ 4(2T(n-3))

≈ 2T(n-1)
≈ 4T(n-2)
≈ 8T(n-3)
≈ 2i T(n-i)
≈ 2n

1 + 2T(n-1)

Exponential again!!

Last Updated 8 October 2015
CSE 2011
Prof. J. Elder - 44 -

Binary Recursion: Summary

•  Binary recursion spawns an exponential number of
recursive calls.

•  If the inputs are only declining arithmetically (e.g., n-1,
n-2,…) the result will be an exponential running time.

•  In order to use binary recursion, the input must be
declining geometrically (e.g., n/2, n/4, …).

•  We will see efficient examples of binary recursion with
geometricaly declining inputs when we discuss heaps
and sorting.

Last Updated 8 October 2015
CSE 2011
Prof. J. Elder - 45 -

Outline

•  Induction

•  Linear recursion
–  Example 1: Factorials

–  Example 2: Powers

–  Example 3: Reversing an array

•  Binary recursion
–  Example 1: The Fibonacci sequence

–  Example 2: The Tower of Hanoi

•  Drawbacks and pitfalls of recursion

Last Updated 8 October 2015
CSE 2011
Prof. J. Elder - 46 -

The Overhead Costs of Recursion

•  Many problems are naturally defined recursively.

•  This can lead to simple, elegant code.

•  However, recursive solutions entail a cost in time and
memory: each recursive call requires that the current
process state (variables, program counter) be pushed
onto the system stack, and popped once the recursion
unwinds.

•  This typically affects the running time constants, but not
the asymptotic time complexity (e.g., O(n), O(n2) etc.)

•  Thus recursive solutions may still be preferred unless
there are very strict time/memory constraints.

Last Updated 8 October 2015
CSE 2011
Prof. J. Elder - 47 -

The “Curse” in Recursion: Errors to Avoid

// recursive factorial function
public static int recursiveFactorial(int n) {
 return n * recursiveFactorial(n- 1);
}

•  There must be a base condition: the recursion must
ground out!

Last Updated 8 October 2015
CSE 2011
Prof. J. Elder - 48 -

The “Curse” in Recursion: Errors to Avoid

// recursive factorial function
public static int recursiveFactorial(int n) {
 if (n == 0) return recursiveFactorial(n); // base case
 else return n * recursiveFactorial(n- 1); // recursive case
}

•  The base condition must not involve more recursion!

Last Updated 8 October 2015
CSE 2011
Prof. J. Elder - 49 -

The “Curse” in Recursion: Errors to Avoid

// recursive factorial function
public static int recursiveFactorial(int n) {
 if (n == 0) return 1; // base case
 else return (n – 1) * recursiveFactorial(n); // recursive

case
}

•  The input must be converging toward the base
condition!

Last Updated 8 October 2015
CSE 2011
Prof. J. Elder - 50 -

Outline

•  Induction

•  Linear recursion
–  Example 1: Factorials

–  Example 2: Powers

–  Example 3: Reversing an array

•  Binary recursion
–  Example 1: The Fibonacci sequence

–  Example 2: The Tower of Hanoi

•  Drawbacks and pitfalls of recursion

Last Updated 8 October 2015
CSE 2011
Prof. J. Elder - 51 -

Outcomes

•  By understanding this lecture you should be able to:
–  Use induction to prove the correctness of a recursive algorithm.

–  Identify the base case for an inductive solution

–  Design and analyze linear and binary recursion algorithms

–  Identify the overhead costs of recursion

–  Avoid errors commonly made in writing recursive algorithms

